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Classification of the Delaunay simplex forms is carried out for the ideal

structures of ice Ih and ice Ic. Classification according to the number of edges of

different length reveals six types of simplices, while classification according to

the number and mutual positions of edges of the unit length (equal to the length

of the hydrogen bond) reveals five types of indices. Ice Ic is composed of

simplices of three types (one of which has the form of a perfect tetrahedron), ice

Ih from six simplices. Degeneracy is removed in computer models of slightly

distorted ice by means of insignificant shifting of water molecules from their

ideal positions. This makes it possible to provide the unambiguous partition of

the crystal structure into Delaunay simplices. It is found that degeneracy

removal results in the appearance of Delaunay simplices of specific forms with a

very small volume (Kije simplices). The shape characteristics of simplices of

different types and their percentage are calculated in the large computer models

of ice. In particular, the fraction of the Kije simplices is found to be about 7.5%

in ice Ih.

1. Introduction

Geometric Voronoi–Delaunay methods provide a very effec-

tive tool to analyse the structure of computer models of

molecular systems. The advantages of these methods lie in the

possibility of partitioning the space of the model into simple

geometric objects in a mathematically strong and unambig-

uous way. The first of these objects, the Voronoi polyhedron

(VP), corresponds to each atom of the system and char-

acterizes the space region that is nearest to its centre. Two

atoms sharing a VP face are the nearest, geometric neigh-

bours. One uses the VP for studying the local atom environ-

ment, for example, its local density. The second object, the

Delaunay simplex (DS), describes, in contrast, the space

between the atoms. Each DS is a tetrahedron whose vertices

are the centres of the four atoms that are the geometric

neighbours of each other; it corresponds unambiguously to an

empty interstitial sphere inscribed between these atoms. The

size of interstitial spheres, the volume, form and arrangement

of the Delaunay simplices make it possible to describe the

structure of empty interatomic space. Detailed information

about the properties of the VP and DS can be found in Rogers

(1964), Medvedev (2000), Okabe et al. (2000).

Thus far the Voronoi–Delaunay method has been used to

describe the structures of various models from the packing of

hard spheres to aqueous solutions of complex biological

molecules. Voronoi polyhedron language has found wide use

whereas that of the Delaunay simplex is less common, despite

the fact that it is extremely effective for describing the struc-

ture of the dense irregular packing of atoms in simple liquids.

As is known (see, e.g., Kelly & Groves, 1970), in the crystal

closest packings of spheres there are two types of interstitial

voids: tetrahedral and octahedral ones. A tetrahedral config-

uration of four atoms forming the void of the first type is a

Delaunay simplex. An octahedral configuration of six atoms

forming the void of the second type is nonsimplicial and can be

divided into four simplices in the form of one-fourth of an

octahedron (quartoctahedron) when displacing slightly atom

positions relative to the coordinates of a perfect octahedron.

Thus, the structure of f.c.c. (face-centred cubic) and h.c.p.

(hexagonal close-packed) crystals can be partitioned into the

two kinds of Delaunay simplices, the number of quartocta-

hedra being twice as much as that of the tetrahedra. Advan-

cing to applying the Delaunay simplices to describe simple

liquids (consisting of spherical atoms) is explained by the fact

that the basic structural elements of these systems are the

same simplex types as in closest-packed crystals, i.e. tetrahedra

and quartoctahedra (Naberukhin et al., 1991; Naberukhin &

Voloshin, 2006). However, the fraction of tetrahedra in irre-

gular packings is considerably greater and their arrangement

is principally different than in crystals: tetrahedra in liquids

are organized in long branched chains which permeate the

whole volume of the specimen.

Voronoi polyhedron language is also used extensively for

studying the structure of water. In contrast, Delaunay

simplices in water and aqueous systems have been investi-

gated little. We know of only two papers (Tytik, 2008a,b) in

which the author considers some properties of Delaunay

partitioning in the ices Ih and Ic, but does not give the full

classification of Delaunay simplices. Disregard of DS in water
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and ice can be explained by the absence of prevailing forms of

Delaunay simplices in the loose-packed systems, particularly

in water: here a wide variety of their forms exists for which the

principles of classification have still not been devised. It is

reasonable to begin the investigation with an analysis of the

ice structures. In the present work we carry out a classification

of Delaunay simplices for the structures of ordinary hexagonal

ice (ice Ih) and metastable cubic ice (ice Ic). All hydrogen

bonds in these ices are directed at tetrahedral angles (see

Wyckoff, 1963), so that they represent two variants of the

perfect tetrahedral network of hydrogen bonds.

2. Structure of ice Ih and ice Ic

For our aim to classify the Delaunay simplices it is convenient

to represent the ice structure not by the unit cell of a crys-

tallographic lattice but by the module – a specific group of

molecules which, being attached one to another, makes it

possible to describe the whole of the crystal structure. These

modules are depicted in Fig. 1 where sites correspond to the

centres of molecules, i.e. to the centres of oxygen atoms.

Modules may be imagined as ‘baskets’ at the faces of which

hexagonal rings are situated (Fig. 2). A basket of ice Ic

represents a perfect tetrahedron (points 2, 4, 6 and 10) whose

edge length is equal to the distance between second neigh-

bours of water molecules along the hydrogen bonds (this

distance we designate as R2). A basket of ice Ih is a triangular

prism (points 2, 4, 6, 7, 8 and 9). In ice Ic the ring of chair form

is situated at each face of the basket whereas in ice Ih rings–

chairs are situated only at the triangular bases of the prism and

the rings of boat form are placed at its rectangular faces. The

sites of the rings are vertices of some polyhedra which we

name ring polyhedra. The module polyhedron is comprised of

the basket together with adjacent ring polyhedra. (It should be

noted that module polyhedra are not stereohedra since the

ring polyhedra are common parts of two adjacent module

polyhedra. This is of no importance for our aim as we are

interested in revealing all forms of DS but not in the problem

of partition of space into equal polyhedra.)

All six molecule centres forming the rings are placed on the

same sphere whose interior does not contain other centres of

the crystal structure. The centre of this sphere is simulta-

neously the centre of an interstitial sphere which can be

inscribed between six molecules forming the ring. Interstitial

spheres of another type are situated in the centres of spheres

circumscribed around baskets. All types of interstitial spheres

of module polyhedra are presented in Fig. 3. They overlap one

another and illustrate a peculiar picture of empty space in the

ice.

Itoh et al. (1996) distinguished two types of interstices in ice

Ih designated as Tu (uncapped trigonal) and Tc (capped
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Figure 1
Modules of the ice structures: left, ice Ic; right, ice Ih. Coordinates of the
water molecule centres: 1 (�2a,0,0); 2 (�a,�b,�c); 3 (a,�b,�c); 4
(2a,0,�c); 5 (a,b,0); 6 (�a,b,�c); 7 (�a,�b,�4c); 8 (2a,0,�4c); 9
(�a,b,�4c); 10 (0,0,�5c); 11 (�2a,0,�5c); 12 (a,b,�5c); 13 (a,�b,�5c).
a = (2)1/2/3; b = (2/3)1/2; c = 1/3. Length unit is equal to the distance
between oxygen atoms of neighbouring water molecules.

Figure 2
Module baskets (shown in blue): left, ice Ic (perfect tetrahedron); right,
ice Ih (triangular prism).

Figure 3
Arrangement of the interstitial spheres relative to water molecules. Top
row – ice Ic, middle and bottom rows – ice Ih. Blue spheres with radius 0.5
correspond to water molecules (on the right their radius is diminished
fivefold for clarity). Interstitial spheres of the chair ring are given in cyan,
spheres of the boat ring in green, spheres of the baskets in red. Grey
spheres show interstitial spheres of the Kije trapezoids (left sphere
corresponds to the trapezoid 1, 6, 9, 11, right sphere to trapezoid 2, 3, 13,
7). Right picture of the bottom row depicts the so-called capped trigonal
site (Tc) where a central void sphere (with radius 5/6) is given in orange.



trigonal) sites. A Tu site is equivalent to the centre of our

basket prism. A Tc site is the centre of a configuration formed

by three adjacent boat rings (see Fig. 3, bottom right). It is

unreasonable to designate a Tc site as an interstice because it

is bounded by only two water centres (‘caps’, numbers 3 and

13 in Fig. 3), whereas a true interstitial sphere is bounded by

four or more centres. It is self-evident that an interstitial water

molecule, being introduced into a Tc site, cannot remain here

and will move towards the adjacent Tu site or interstices of

rings; the authors did observe this situation by molecular

dynamics simulation.

As is known, the centres of interstitial spheres, coinciding

with the centres of the circumspheres of Delaunay simplices,

are the vertices of the Voronoi polyhedra. Such polyhedra for

two forms of ice are presented in Fig. 4.

3. Classification of the Delaunay simplices in the
structures of ice Ih and ice Ic

Partitioning the module polyhedra into Delaunay simplices

involves the constituent DS of the ring polyhedra and the DS

of the basket. All six sites of each ring, both chair and boat, are

situated on the same circumsphere whose centre coincides

with the centre of the ring and whose radius is Rring =

(33/36)1/2. Inside of this sphere there are no other centres of

molecules of the crystal; therefore we may conclude, according

to the Delaunay theorem on the empty sphere (see Delaunay,

1934; Medvedev, 2000), that all tetrahedra into which ring

polyhedra can be partitioned are Delaunay simplices. Because

the number of molecules situated on the circumsphere is more

than four, the ring configurations of molecules are degenerate,

i.e. they can be partitioned into DS in a variety of ways. All

sites of baskets are situated on one circumsphere, too, and

inside of it there are no other sites of the module polyhedron.

A basket of ice Ic, being the perfect tetrahedron, is a single

Delaunay simplex. The molecular configuration of the basket

prism of ice Ih is degenerate and can be divided into several

simplices. The possible variants of partitioning the module

polyhedra into DS in the ideal structures of ice can be found

by simple examination of options. These variants are displayed

in Fig. 5 for ring polyhedra and in Fig. 6 for basket ones.
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Figure 4
Voronoi polyhedra in ice Ic (left) and ice Ih (right). C – centres of the
chair rings, B – centres of the boat rings, T – centres of the tetrahedron
baskets, P – centres of the prism baskets.

Figure 5
Delaunay simplices of ring polyhedra. Grey rings depict the projections
of rings on a plane normal to their axis. Black points correspond to
vertices lying above a plane in which other vertices are situated. The
projections of Delaunay simplices are shown by black lines; the invisible
edges (situated behind the simplex body) are shown by a black dotted
line. Filling the space of a ring polyhedron will be fulfilled when
superimposing successively one simplex on another beginning with the
extreme left simplex in each variant. Coloured details are explained in the
text.

Table 1
Classification of Delaunay simplices according to edge lengths.

R1 = 1 Distance between oxygen atoms of nearest
molecules (length of the hydrogen bond)

R2 = (8/3)1/2 = 1.6330 Distance between next nearest molecules across
the ring

R3 = (11/3)1/2 = 1.9149 Distance between molecules disposed at
diametrically opposite vertices of the chair ring

R3bis = 5/3 = 1.6667 Distance between molecules disposed at upper
vertices (bow and poop) of the boat

Simplex type Edge composition

Type I 2R1 + 3R2 + R3
Type Ibis 2R1 + 3R2 + R3bis
Type II 3R1 + 2R2 + R3
Type III 2R1 + 2R2 + R3 + R3bis
Type IV R1 + 3R2 + 2R3
Type V R1 + 2R2 + 3R3
Kije rectangle 2R1 + 2R2 + 2R3
Kije trapezoid 3R1 + 2R2 + R3bis



Fig. 5 shows that ring polyhedra can be broken up into four

and three DS for the ring–chair and the ring–boat, respec-

tively, with two variants of partitioning in both cases. The ring–

chair polyhedron is made up of the simplices of two types

which can be classified by the numbers of edges of different

length; this classification is given in Table 1. In the ring–boat

polyhedron two additional types of simplices exist, the type

Ibis differing from type I only by the length of the longest

edge. The basket polyhedron of ice Ic is the Delaunay simplex

in the form of a perfect tetrahedron, whereas in ice Ih it is

divided into three simplices of two types (Fig. 6).

We performed a computer analysis of ice models to corro-

borate the partitions found ‘theoretically’ and to determine

the statistics of different variants. The

ideal forms of ice were slightly

disturbed by shifting the positions of

molecules one by one and completely at

random within a sphere of radius 10�4

of hydrogen-bond length. Such a

distortion of coordinates is sufficient to

remove the degeneracy, i.e. to exclude

an ambiguity of partitioning the

nonsimplicial polyhedra and to ascribe

to each simplex its own separate

circumsphere. All results of computer

analysis are summarized in Tables 2 and

3. They reveal unexpected and nontri-

vial facts.

The most nontrivial result of the

partition of the module polyhedra into

Delaunay simplices after degeneracy

removal is the appearance of simplices

of a specific form with nearly zero

volume (see Tables 2 and 3). Simplices

of such a kind were first discovered by

us in the model of Lennard-Jones liquid

and have been named the Kije simplices

(Voloshin et al., 1989); such simplices

appear of necessity in the structure of

simple liquids and are their character-

istic property (Naberukhin & Voloshin,

2006). Kije simplices arise when, in a

polyhedron analysed, there are four

vertices lying in the same plane; it makes no difference

whether they compose a face of some polyhedron (as points 2,

4, 7 and 8 in the boat in Fig. 1) or not (as points 1, 2, 4 and 5 in

the chair). After degeneracy removal these four vertices leave

the plane and form a flat tetrahedron with a very small

volume. If the circumsphere of this tetrahedron does not

contain other sites of the given or neighbouring module

polyhedra, so this tetrahedron is, by definition, a Delaunay

simplex and we designate it as the Kije simplex. Otherwise

these vertices compose four triangles which are components of

other simplices into which a module polyhedron is partitioned.

The possible variants of appearance of the Kije simplices

are presented in Fig. 5 outlined in red. The ring–boat poly-

hedron is situated on the rectangular face of the ice Ih basket.

In the ideal crystal two triangular faces of adjacent simplices

of the ring (coloured yellow in the figure) compose a plane

rectangle which coincides with the basket face. Two diagonals

of this rectangle may not coincide after degeneracy removal,

resulting in the Kije simplex (if its circumsphere does not

contain other sites of the system). Such a possibility exists in

both variants of the partition of the ring–boat. The ring–boat

polyhedron has other plane tetragonal faces in the form of a

trapezoid by which neighbouring module polyhedra are

joined. Two diagonals of this trapezoid may not coincide in

adjacent modules after degeneracy removal; then a trapezoid

may transform to the Kije simplex of negligible volume. In Fig.

3 (left picture of the bottom row) an actual case of degeneracy
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Figure 6
Delaunay simplices of the basket of ice Ih. Blue lines mark a simplex of
the type V: R1 + 2R2 + 3R3. Simplices of the type IV (R1 + 3R2 + 2R3) are
placed on the top and on the bottom relative to it.

Table 2
Properties of the Delaunay simplices in nearly ideal ice Ih.

123200 sites from 35 � 20 � 22 unit cells. 1064916 Delaunay simplices. Fractions of DS edges: R1 20.73%;
R2 51.04%; R3bis 5.18%; R3 23.05%.

Index and
total fraction

Fraction
(for ideal ice
in parentheses) Circumradius Volume

Tetrahedricity
measure

Simplex
type

1 0.173535 0.11569 (1/8) Rbask 0.38490 0.08501 Type IV
0.05785 (1/16) 0.09074 Type V

2 0.098053 0.07235 (5/64) Rring 0.21383 0.13454 Type III
0.02570 (0) 3.82 � 10�5 0.15283 Kije rectangle

3 0.318065 0.10118 (7/64) Rring 0.21383 0.10782 Type I bis
0.21687 (15/64) 0.12830 0.13335 Type I

5 0.410348 0.04878 (0) Rtrap 3.06 � 10�5 0.14263 Kije trapezoid
0.36158 (25/64) Rring 0.12830 0.18194 Type II

Rring = (33/36)1/2 = 0.95740, circumradius of rings. Rbask = (41/36)1/2 = 1.06715, circumradius of basket prism. Rtrap =
(3/4)1/2 = 0.86604, circumradius of the Kije trapezoid.

Table 3
Properties of the Delaunay simplices in nearly ideal ice Ic.

125000 sites from 253 unit cells. 1125750 Delaunay simplices. Fractions of DS edges: R1 19.98%; R2
59.97%; R3 20.05%.

Index

Fraction
(for ideal ice
in parentheses) Circumradius Volume

Tetrahedricity
measure

Simplex
type

0 0.11104 (1/9) R1 0.51320 0.0000 Basket tetrahedron
2 0.00067 (0) Rring 3.02 � 10�5 0.15283 Kije rectangle
3 0.44415 (4/9) Rring 0.12830 0.13335 Type I
5 0.44415 (4/9) Rring 0.12830 0.18194 Type II



removal is displayed when two Kije trapezoids occur together

with corresponding interstitial spheres.

The ring–chair polyhedron has no completed plane

rectangular face, but a plane rectangle (outlined in red in Fig.

5) is composed of four triangular faces of four simplices into

which the ring is partitioned in variant 2 – they are coloured

yellow in Fig. 5. Fig. 5 displays a case when two diagonals of

the rectangle do not lie in the same plane in two pairs of

simplices after degeneracy removal; this may result in the

appearance of a Kije simplex (if the circumsphere of the

distorted rectangle does not contain other sites of the system).

Tables 2 and 3 give the characteristics of all Delaunay

simplices found in the computer models of slightly distorted

forms of ice Ih and ice Ic. In addition to classification of

simplices according to the types given in Table 1, here we also

indicate the classification according to simplex index, that is,

the sum of the number of edges with length R1 = 1 plus the

number of sites in which two or more edges of such a length

meet. We see that in the almost ideal ices only five types of

indices among ten possible variants are realized, with only

four types in each ice. The tables present the fractions of each

type of Delaunay simplex found in the models. In addition, the

tables indicate the radius of the circumsphere, simplex volume

and characteristics of its shape – the tetrahedricity measure T

which is proportional to the dispersion of lengths li of all its

edges normalized to mean square length:

T ¼
X

i>k

ðli � lkÞ
2=15hli2:

For a perfect tetrahedron T = 0 (see DS with index 0 in Table

3).

It should be noted that the total fraction of Kije simplices

(rectangles and trapezoids) in ice Ih amounts to 7.5%, i.e.

these types of simplices can in no way be neglected among all

simplices. In ice Ic the fraction of Kije simplices is two orders

smaller. Another method of degeneracy removal may lead to

different values for the simplex fractions (especially for Kije

simplices); however these differences will be minor.

4. Conclusions

We carried out a classification of the Delaunay simplex forms

in the ideal structures of hexagonal (ice Ih) and cubic (ice Ic)

ice. Classification according to the number of edges of

different length reveals six types of simplices, while classifi-

cation according to the number and mutual positions of edges

of the unit length (equal to the length of the hydrogen bond)

reveals five types of indices. Ice Ic is composed of simplices of

three types (one of which has the form of a perfect tetra-

hedron), and ice Ih from six simplex types. Degeneracy, i.e. a

situation when more than four sites of the crystal lattice are

situated on the empty simplex circumsphere, is removed in

computer models of slightly distorted ice by means of insig-

nificant shifting of water molecules from their ideal positions.

This offers the possibility of providing the unambiguous

partition of the crystal structure into Delaunay simplices. It is

found that degeneracy removal results in the appearance of

Delaunay simplices of specific forms with very small volume

(Kije simplices) which arise when in an ideal lattice there are

four sites lying in the same plane. The shape characteristics of

simplices of different types and their percentage are calculated

in the large computer models of ice. In particular, the fraction

of the Kije simplices (of two types) is found to be about 7.5%

in ice Ih.
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